
JOURNAL OF COMPUTATIONAL PHYSICS 79, 5069 (1988)

A Fast Numerical Method for Solving the
Three-Dimensional Stokes’ Equations in

the Presence of Suspended Particles

AARON L. FOGELSON

Department of Mathematics,
University of Utah, Salt Lake City, Utah 84112

AND

CHARLES S. PESKIN

Courant Institute of Mathematical Sciences,
New York University, 251 Mercer Street, New York, New York 10012

Received March 6, 1987; revised December 14, 1987

A new fast numerical method for solving the three-dimensional Stokes’ equations in the
presence of suspended particles is presented. The fluid dynamics equations are solved on a
lattice. A particle is represented by a set of points each of which moves at the local fluid
velocity and is not constrained to lie on the lattice. These points are coupled by forces which
resist deformation of the particle. These forces contribute to the force density in the Stokes’
equations. As a result, a single set of fluid dynamics equations holds at all points of the
domain and there are no internal boundaries. Particle size, shape, and deformability may be
prescribed. Computational work increases only linearly with the number of particles, so large
numbers (500-1000) of particles may be studied efficiently. The numerical method involves
implicit calculation of the particle forces by minimizing an energy function and solution of a
finite-difference approximation to the Stokes’ equations using the Fourier-Toeplitz method.
The numerical method has been implemented to run on all CRAY computers: the implemen-
tation exploits the CRAY’s vectorized arithmetic, and on machines with insufficient central
memory, it performs efficient disk I/O while storing most of the data on disk. Applications of
the method to sedimentation of one-, two-, and many-particle systems are described.
Trajectories and settling speeds for two-particle sedimentation, and settling speed for
multiparticle sedimentation from initial distributions on a cubic lattice or at random give
good quantitative agreement with existing theories. 0 1988 Academic Press, Inc.

1. INTR~D~JCTI~N

We present a new fast numerical method for solving the three-dimensional
Stokes’ equations in the presence of discrete suspended elastic particles (rigid
particles are modelled as slightly deformable). This method is an extension of the
two-dimensional method for studying flows with immersed boundaries introduced

50
0021-9991/88 $3.00
Copyright 0 1988 by Academic Press, Inc.
AI1 rights of reproduction in any form reserved.

3D STOKES’ FLOW WITH PARTICLES 51

by Peskin [12] for studying blood flow in the heart, and previously applie
Fogelson [S] in an investigation of platelet aggregation during blood clotting.
salient feature of this immersed-boundary method is the replacement of material
boundaries by suitable contributions to a force density term in the fluid dynamics
equations. A single set of fluid dynamics equations then holds in the entire domain
and there are no internal boundary conditions. In the present context, t
technique permits the study of particles of different sizes and shapes as well
particles that deform. Also, since each particle influences the fluid motion, a
hence the motion of other particles, only through its contribution to the fluid force
density, and since this contribution is determined independently for each par
the computational work associated with the particles increases only linearly
the number of particles. Hence, the dynamics of large multiparticle systems, perhaps
involving as many as 1000 particles, may be investigated.

The numerical method is designed to study a model fluid-particle system in
which each particle is represented by a finite number of fluid points. These points
are joined together by a prescribed set of elastic links which generate internal
particle forces whose function is to cause the nearby fluid to move as a single unit.
(This representation of an elastic particle is motivated by a derivation of the
equations of elasticity obtained by considering the continuum limit of ensembles
points connected by spring forces.) The internal particle forces and the appli
external forces determine the overall fluid motion. Since the points which make u
the particles are lluid points, they move at the local fluid velocity, We note that t
use of a distribution of points to represent each particle permits us to study particle
rotation as well as translation.

The motion of the fluid is described by the inhomogeneous Stokes’ equations.
These equations are approximated, using finite differences, at points of a com-
putational lattice, and the resulting discrete Poisson equations are solved by means
of the Fourier-Toeplitz method [4]. The motion of the points which make up the
particles is tracked independently of the lattice using a simple Euler scheme.
Explicit evaluation of the internal particle forces produces violent instabilities in the
motion of the particles. For this reason, these forces are calculated ~~pZi~~tiy by
minimizing a nonlinear energy function 4. The minimization is accomplished using
Gill and Murray’s modified Newton’s algorithm [7, S] which can handle the
indefinite Hessian matrices of 4 that are frequently encountered. The ~~rne~ical
method has been implemented for use on @RAY computers; the imp~e~e~tatio~
exploits the GRAY’s ability to do vector arithmetic, and, on machines with
insufftcient central memory capacity, it uses asynchronous I/O ~i~p~t/o~t~~t)
routines to perform efficient disk I/O while storing most of the data on the disk (see
[6-j for details).

We present promising preliminary results from our application of the n
method to sedimentation problems. We expect that the method will be a
tool for studying many types of suspension flows. We plan, in particular, to
incorporate the method into our ongoing study of platelet aggregation in or
extend that study to three dimensions.

52 FOGELSON AND PESKIN

2. MODEL SYSTEM

We study the interaction of a viscous fluid with a collection of discrete model
particles inside a three-dimensional cube B of side L. We assume that inertia is
negligible and we describe the fluid motion by the Stokes’ equations,

o= -Vp+pAu+f(x, t) (1)

o=v.u. (2)

Here, u is the fluid velocity, p the pressure, and p the viscosity. The force density
f(x, t) is constructed to have period L in each of the coordinate directions. We seek
a solution II, p which is similarly periodic. The Stokes’ equations hold for all points
x in the cube B.

Each model particle, say particle k, is constructed from a finite collection of
points xkl. Each such point is assumed to have no inertial mass and to move at a
velocity which is a weighted average of the fluid velocity in the immediate
neighborhood:

kkf dt = 1 4x, t) 6,(x - xdf)) dx.
B

(3)

In this formula, the function 6,(x) is a smooth function of integral 1 with support in
a sphere of radius s. (Here and in Eq. (5), if a point in the support of 6, is outside
the basic periodic box B, its periodic image inside B should be used instead.) The
reason for using this local average, instead of just evaluating u at xkl, will appear
below.

The points {x,J which comprise the kth particle are linked to one another by a
prescribed set of elastic links. For example, an octahedral particle can be
constructed from seven points, six at the vertices and one at the center, with each
vertex joined by elastic links to its four neighboring vertices and by a similar link to
the center point. The links generate internal particle forces which act, through the
mediation of the fluid, to resist deformation of the particles. It may be helpful to
think of the link forces as approximations to the distribution of forces which a real
particle exerts on the adjacent fluid. For a rigid particle these forces are just those
necessary to make the motion that of a rigid body. In this paper, we consider only
the limiting case of very stiff elastic links in order to approximate rigid particles as
slightly deformable. For simplicity, we assume that each link acts as a linear spring.
Thus, the resultant of the link forces which act on point xk, is given by

Here, L, is the set of indices of the points linked to the point whose index is 1, S[, is
the stiffness of the link joining points x,&l and xkm, and rfm is the resting length of
this link. We assume throughout this paper that all of the particles have the same

3D STOKES’ FLOW WITH PARTICLES 53

number of points (M) and the same structure of links and note that this structure is
specified by the sets L,, 1= 1, M. We note also that the sets LI are defined once
and do not change during the course of the calculations. (Generalization to
particles constructed from different numbers of points or with diffe~~~~
configurations of links is immediate.)

In addition to the internal link forces, application-dependent external forces, sue
as gravitational forces, as well as inter-particle forces, such as electrical forces, may
act on the points of each particle. Both the internal and external forces influence
particle motion only through the mediation of the fluid. They do this by
contributing to the force density f(x, t) which appears in the Stokes’ equatio
More precisely, if we assume that there are N particles each constructed from
points xk[, then we define the force density by

f(x, t)= f g (f$+ff;;l’)6s(x-x,,(t))-c.
k=l I=1

Here, fgt is the applied external force on point x kl, fg is the resultant of the spring
forces of the links joining xkI to other points in the kth particle, and 6,(x) is the
same weight function which is defined in Eq. (3). Thus, each force f $‘;’ or f 2 is “felt’”
by the fluid over a small volume surrounding the point xk/. This gives xki an
effective radius of order s (see Fig. 1). We emphasize that the force density f is the
only way that the fluid feels the presence of the particles. The vector c in Eq. (5) is a
constant vector chosen so that

J f(x, t) dx = 0.
B

FIG. 1. Cross section of an octahedral particle. The boxes indicate points xki and are joined by line
segments representing elastic links. The circular arcs enclose the region in which the particle makes
a contribution to the force density f(x, t). Figures reprinted with the permission of the Society
for Industrial and Applied Mathematics from Advances in Multiphase Flow and Related Problem,
6. Papanicolaou, Ed. All rights reserved. Copyright 1986 by the Society for Industrial and Applied
Mathematics.

54 FOGELSON AND PESKIN

This is a compatibility condition for the Stokes’ equations in the periodic box B, as
may be seen by integrating Eq. (1) over the cube B and then invoking the
periodicity of u and p. We remark that the compatibility condition JB f dx = 0 is
automatically satisfied by f (int). This follows from the translation-invariance of the
energy function from which funt) is derived. (See below.)

The Stokes’ equations may alternatively be written in the form

V*(Vp)=V*f (7)

w=f-vp (8)

Au = -(l/,B)w. (9)

Here, w is the projection of the force density onto the space of divergence-free
vector fields. In this formulation (which exploits the simplicity of the periodic
domain) the pressure is computed first by solving one Poisson equation and then
the velocity is computed by solving a second Poisson equation. Furthermore, in
Eq. (9), the components of the velocity u are uncoupled from each other.

Associated with Eqs. (7) and (9) are the compatibility conditions

and

J V.fdx=O
B (10)

J wdx=O, (11)
B

respectively. The divergence theorem and the periodicity of f imply that Eq. (10) is
satisfied, while the compatibility condition on f (see Eq. (6)) and the periodicity of
p ensure that Eq. (11) holds.

To summarize our discussion thus far, we model physical particles by
constructing each particle out of a set of points {xkl}. These points are subject to
external forces as well as to internal forces designed to resist changes in the
particle’s size and shape. These forces all contribute to the force density f as
described in Eq. (5); f determines the fluid motion by Eqs. (7t(9); and the points
(xkl} move at the local fluid velocity as described by Eq. (3). We repeat that the
main reason for representing particles by collections of localized forces is the
relative simplicity of the resulting equations; a single set of fluid dynamics equations
is valid everywhere in the domain, and there are no internal boundary conditions.

We conclude this section with a discussion of the energy flow in the model system
defined by the foregoing equations. In particular, this discussion explains why it is
important to use the same weight function 6, in Eqs. (3) and (5).

We assume here that the internal forces are negative gradients of a translation-
invariant function, the elastic internal energy. That is,

dE fint -

ki - axk[’
(12)

3D STOKES’ FLOW WITH PARTICLES 5s

where E(. . . xkl . . .) has the property

E(xl, + a, XNM+akE(xll, XNM) (13)

for every constant displacement a. (In Eq. (12), the expression a/ax,, means t
gradient with respect to xk[.) It follows directly from Eq. (13) and the arbitrariness
of a that

An example of such a function E is given by the elastic energy function

(Note that each link appears twice in the sum, hence the factor $ instead of 4)” This
function is obviously translation-invariant, and its negative gradient is the system of
internal forces given by Eq. (4).

We now consider the rate of change of the elastic internal energy as the points xk!
move according to Eq. (3). According to the chain rule

Next, we rewrite Eq. (5) in the form

f(x, t) = fyx, t) + fyx, t), (1-o

where

fint(x, t) = c fg 6,(x-x/J (181
kl

f yx, t) = c f Et 6,(x - Xkl) - e.
kl

Note that the constant c, which is chosen to enforce the compatibility condition
JB f dx = 0, is only associated with the external forces, since je f int dx = 0 foIl~ws
directly from the translation invariance of E.

56 FOGELSON AND PESKIN

Because we have used the same function 6, in Eqs. (3) and (5), we may now
substitute Eq. (18) into (16) to obtain

dE
z=-B s

u(x, t) . fint(x, t) dx

= -
s

u(x, t) . f(x, t) dx + pt,
B

(20)

where

et = s u(x, t) * fyx, t) dx (21)
B

is the rate at which the external forces do work in the system.
It remains to evaluate jB u . f dx. This is done by applying sB u . () dx to all terms

in the Stokes’ equations. The result is

o== -j-Bu.vpdx+pJ wAudx+J u*fdx. (22)
B B

Integrating by parts in the periodic domain B, we find

- s u*Vpdx= (V.u)pdx=O,
B s B

since V. u = 0, and

u.Audx=p
a au.

q-----
axjaxj

(23)

(24)

where fi is the rate at which heat is generated by viscous dissipation [l, p. 1531.
(Note that A&O.) Thus, Eq. (22) implies

s u.fdx=I;I. (25)
B

3D STOKES'FLOWWITH PARTIGLES 57

Substituting this result into Eq. (20), we obtain

which is the appropriate law of conservation of energy for this massless system. In
case tiext - - 0, we have, since ti > 0, the inequality dE/dt d 0. This shows that t
system cannot cycle in the absence of externally applied forces.

3. NUMERICAL METHOD: INTRODUCTION

We now describe the numerical scheme used to study this model system. Because
of the periodicity imposed on our functions, we may restrict our attention to any
one period. Thus, we take as our computational domain the set of points
B= {(x1, x2, x3): 0 6 xi < L, i= 1,2,3}, where we identify opposite sides of the
cube, e.g., x1 = 0 and x1 = L. We place a uniform lattice of size h (h = L/Nh, Nh = a
power of 2) over the cube and divide time into timesteps of size At. The Eulerian
variables u, p and f are defined at points of the lattice and we use the usual notation
~7, i2j3 = u(j, h, j, h, j, h, n At), etc. The particle points are not constrained to coincide
with lattice points and we use the notation x” - kl - xkl(n. At) to denote the position of
the Ith point of particle k at time n At.

Hn order to move the points xk[according to Eq. (3), the weighted-average of
velocities in the neighborhood of xkl which appears in that equation is replace
a similar average of the velocities at lattice points near xk[. To accomplish this, we
introduce a discrete approximation DjljZn(x) to the function 6,(x). (DjljZh(x) is a
three-dimensional version of Peskin’s discrete approximation to the delta-f~~c~~~~
[12-J.) Let

$(l+cos(%)), if IrlG2h
0, if 1~1 >2h.

Then, Dj, jZ j,(x) is defined by

We note that the function Djljzh(x) has support consisting of those lattice points
within a cube of side 4h centered on x; Djljzj3(x) is of order he3 at x; and
Ci, jZj3 h3Dj, jZjX(x) = 1 for any x. For any point x in our domain, we define t
“interpolated velocity”

u”+ ‘(x) = c uj:;f3 Dj, jzn(x) h3.
it .i2 .A

(27)

58 FOGELSON AND PESKIN

(As with the continuous function 6,(x), if (ji, jl, j,) in the support of Dj,j,j,(x) is
outside the basic periodic box, its periodic image within the box is used instead.)
We take the velocity of the point x1, to be the value u”+‘(x;~) given by Eq. (27)
with x = x;[.

We also use Djlizj3(x) to approximate 6,(x) in the definition of f(x, t) given by
Eq. (5). Thus, we define values of the force density on the lattice by

N M

The superscripts denoting time are omitted in Eq. (28) for reasons that will be made
clear below. The constant vector eh is defined so that a discrete version of the
compatibility condition Eq. (6) on f holds on the lattice, i.e.,

C fjt j2j3 = O* (29)
jt i2i3

The internal particle forces are constructed in a way that ensures that

so the vector ch is determined only by the external forces:

‘h= -$jT t g f,?,
k 11 1

i.e., by the lattice average of the applied forces. The vector ch is typically much
smaller than fE’ and f$.

We note that s (as used in the definition of 6,(x)) is a physical parameter and h is
a numerical parameter. Hence, in principle, the ratio s/h -+ co as h -+ 0 and the
support of Djlizj,(x) should grow to reflect this. In practice, we use a finite mesh size
of order s.

The operations performed to advance the model system from time (n dt) to time
(n + 1)dt are as follows: Values f,$,* for the internal spring forces are calculated
using an approximately implicit scheme (see below) to avoid numerical instabilities
in the motion of the points xki. These values are used in the right-hand side of
Eq. (28), along with the prescribed external forces, to define the force density f;,$&
at points of the lattice. Using these values of the force density, a new velocity field
u;,iX is determined. Finally, the velocities are interpolated to the locations x;[using
Eq. (27), and the points xk, are moved to new positions

x;: l = x& + At un+ ‘(x;g. (30)

A description of the implicit force calculation is given below. The solution of the
Stokes’ equations is also described below; a more detailed description of this
portion of the numerical method is given in ES].

3D STOKES'FLOWWITH PARTICLES 5

4. INTERNAL PARTICLE FORCES

The internal spring forces fE are calculated implicitly so as to avoid inducing
instabilities in the motions of the points xk[. An approximately implicit scheme,
similar to one introduced by Peskin 1121 (and previously used in ES]), proves
sufficient to damp out these instabilities. The internal forces which act on the points
xkl of the kth particle are functions only of the points in that particle and of the set
of links connecting these points. It follows from this and from the approximation
introduced below that the implicit calculation of all the internal forces uncouples
into the separate determination of each particle’s internal forces. The calculation of
the internal forces for particle k proceeds as follows: We define points xzr, ..‘, xzM
by the system of equations

x;r; = x& + At if $(x& , xzM), (311

for I = 1, M, where M is the number of points which make up the kth particle.
The parameter /z in Eq. (31) is the magnitude of the velocity induced by a localize
unit force and was estimated numerically. The approximation built into Eq. (3 1) is
that the fluid velocity at xk[is proportional to the internal force f$ and is ~ndepe~~
dent of the forces fg, m # Z. Insofar as this approximation is valid, xzl, xzM is
the configuration of points making up particle k at the end of the timestep. (We are
ignoring here the motion induced by the external forces fEt.) Equation (31) is
implicit because the forces are calculated from the (unknown) configuration
x,& 9 .*-, &4 rather than from the given configuration x$i, . ..) x’&,. Using the solution
of Eq. (31), we define

fint , * = figt
kl (%?I, ..., x&f). 632)

We use these internal forces, along with the prescribed external forces, in E
to define the force density for the Stokes’ equations. The new velocity field which is
in equilibrium with all of the forces is calculated and the points xkl are move
according to Eq. (30). We emphasize that the points xt[are used only to calculate
fint, *

kl .

In order to describe the means of solving Eq. (31), we introduce the notation
X = (x,*,, x&); X0 = (xi,, ~2~); and F= (Grit kl, f&) and note that Pq. (31)
can be expressed

0=X-X0-,lAtF(X). (33)

Although the Jacobian matrix of the (nonlinear) function X--/2 At F(X) is sym-
metric, it is often indefinite in our calculations, so the multidimensional Newton-
Raphson method is inappropriate for solving Eq. (33). Instead, we intro

60 FOGELSON AND PESKIN

a differentiable “energy function” E(E) such that the following conditions are
satisfied:

(i) E(X)>0
(ii) E(x) -+ co as llxll + co

(iii) F(x) = -grad E(X).

(In terms of our original, notation, a suitable energy function is
E=$CL CmEL,&iAl%-%cm II - ylm)‘. This is the same energy function as that
defined in Eq. (15) except that here we consider one particle at a time). A minimum
point of the function g(X) = 4 IIX - X0 II2 + A At E(X) is then a solution of Eq. (31).
We use Gill and Murray’s modified Newton’s method (MNM) [7,8] to seek a
minimum point of 4. This method can handle the symmetric but indefinite Hessian
matrices that we encounter (the Hessian matrix of 4 is identical to the Jacobian of
X - 1 At F(X) mentioned before.)

In brief, Gill and Murray’s method works as follows: Let g be the gradient of 4
and G be the Hessian matrix of 4. A sequence (xcq)} of approximations to a
minimum point of 4 is defined iteratively by the equations

(@I’+ A(4)) p(4) = mg(4) (34)
x(4+ 1) =x(s) + &7)ph7)* (35)

In Eq. (34), ,4(q) is a nonnegative diagonal matrix to be discussed below. The vector
pcq) is called a search direction and ~1~~) is a positive scalar chosen to achieve a
“sufficient decrease” in 4(q + I) relative to dcq). The process of choosing ~1~4) is called
linesearch. We employ a safeguarded-cubic-interpolation linesearch algorithm
similar to that described in [9].

The solution of Eq. (34) is facilitated by the symmetric Gaussian decomposition

(G(4) + A(q)) = ,TJkl)TD(d u(4) 2 (36)

where Ucq) is a unit upper-triangular matrix and Dcq) is a diagonal matrix. A(q) is
constructed during the row-by-row factorization in such a way that:

(i) Gcq) + A(q) is positive definite;
(ii) diagonal elements of Dcq) are bounded away from zero by a positive

constant 6;
(iii) the inequality Id,,u$l Q p’ holds for S> Y, where p’ is a prescribed

constant.

Condition (i) guarantees that pcq) gives a descent direction for 4 as can be seen by
premultiplying Eq. (34) by pcqJT. Conditions (ii) and (iii) ensure the numerical
stability of the factorization and the subsequent forward and back substitution used
in solving Eq. (34).

Provided p’ has been suitably chosen, A(q) is automatically set to zero if Gcq) is

3D STOKES’ FLOW WITH PARTICLES $1

itself sufficiently positive definite in a sense defined by Gill and Murray [7]. The
modified Newton’s method therefore reduces to Newton’s method where GcqJ is
positive delinite (e.g., in the neighborhood of a minimum point of &)), and thus it
has the locally quadratic rate of convergence exhibited by the Newton’s metho
our calculations, convergence is usually achieved in 3 or 4 iterations.

Recall that a separate energy minimization is performed for each model particle.
In principle, these separate calculations could be performed in parallel. The C
architecture does not support fully parallel computations, but it does support
vector operations. The latter allows for substantial speed-up of a sequence of
independent calculations provided they have identical structure. We obtain a code
which is successfully vectorized by the CRAY FORTRAN compiler by replaei~~
appropriate assignment statements in a scalar implementation of the MNM with
(innermost) DO-loops which run over the indices of particles of identical structure.
Thus, the innermost loop runs over different sets of data (in this case each set of
data involves information about one particle) to which the same algorithm is
applied. We illustrate this conversion process with a simple example: One step of
the MNM is the calculation of the maximum magnitude GAMMA of a diagonal
element of the Hessian matrix G (q). For a scalar version of the algorithm, this
calculation is accomplished by the FORTRAN loop

Dimension G(MSIZE, MSIZE)

GAhMA=O.O
DO2J=l,MSIZE

2 GAMMA = AMAXl (GAMMA, ABS(G(J, J))).

For a vectorizable implementation of the algorithm, this portion of code is replaced
by

Dimension GAMMA (N)
Dimension G (N, MSIZE, MSIZE)

DOlI=l,N
1 GAMMA(I)=O.O

DO 2 J = 1, MSIZE
D02I=I,N

2 GAMMA (I) = AMAXl(GAMMA(I), G(l, J, J,))).

Systematic use of this technique leads to a code in which almost every innermost
DO-loop vectorizes. The only exceptions are a few IF statements which could not
be rewritten in this way.

We note that in each of our numerical experiments to date, all of the particles
had the same structure. In general, with particles of differing structures, the set of
particles would be partitioned into classes, each consisting of particles of identical
structure, and vectorization would be achieved for each class.

The factorization (34) as described by Gill and Murray requires order n3/6
operations and order n2 storage locations, where n is the order of the Hessian
matrix G(q). For our work, n is three times the number of points (xkL} use

62 FOGELSONAND PESKIN

construct one particle. Factorization of several Hessian matrices for each particle is
usually required in each time step. For octahedral particles, IZ = 21, but for more
elaborate particles, Hessian matrices of order lo&200 may result. Such matrices
would be sparse, as each point xk[would be linked to only a few neighboring
points. In [S], Fogelson described a means of merging the MNM with the sparse
symmetric Gaussian elimination algorithm of the Yale sparse matrix package [3]
to reduce substantially the computational work and storage required for the
factorization (34) of sparse Hessian matrices. This method could be adapted for use
in minimizing the energy functions of particles constructed from many points. We
note that the complicated linked-list data structure used by the sparse factorization
routine to keep track of the nonzero entries of the Hessian would not interfere with
successful1 vectorization of the code. This is because the innermost FORTRAN
loops run over the indices of particles which have the same configuration of elastic
links and for which, therefore, the zero/nonzero structure of the Hessian matrices
would be the same.

5. SOLUTION OF THE STOKES' EQUATIONS

Next, we briefly describe the numerical solution of the projection form of the
Stokes’ equations given in Eqs. (7)-(9). We assume that the force density f has been
defined at all lattice points and that it satisfies the discrete compatibility condition
Eq. (29). To describe our discretization of Eqs. (7~(9), we need to introduce the
usual centered-, forward-, and backward-difference operators, Dp, D,++, and D,:,
respectively, for each of the coordinate directions i. For example, Dptj(x) =
(4(x + he,) - 4(x - hei))/2h, where ei is the unit vector in the i-coordinate direction
and h is the lattice spacing. For a scalar function ti and a vector function
u = (ul, ZQ, z+), we define discrete gradient, divergence, and Laplacian operators

G$ = P%, D:$, @‘lcI) (37)

DYI=D$~+D;u,+D$+ (38)

gt+b= i D,+ D,:$. (39)
i=l

Each of these discrete operators is a second-order approximation to the
corresponding differential operator. Our discrete approximation to Eqs. (7)-(9) is

D.Gp=D.f (40)

w=f-Gp (41)
zu= -(l/p)w. (42)

These equations are meant to hold at all points of the computational lattice.
Discrete analogs of the compatibility conditions (10) and (11) must be satisfied.

3D STOKES’ FLOW WITH PARTICLES 63

That they are indeed satisfied follows from Eq. (29) and the periodicity of f and 9.
We note that the operator D * G involves differences on a staggered grid; i.e., each
point of the lattice is coupled to its second neighbors, while the operator 5?
involves nearest-neighbor coupling. It follows from Eq. (40) and (41) that D. w =
Equation (42) and the periodicity of u then imply that D . u = 0 as well. The discrete
divergence of u would not vanish if the operator 2 had been used to approximate
the Laplacian in the equation for the pressure.

Equations (40)-(42) constitute a set of four discrete Poisson equations that we
solve to determine u and p. Despite the different grids underlying the discrete
Laplacian operators in the pressure and velocity equations, essentially the same
method of solution is used in both equations. This is the Fourier-Toeplitz method
[4]. We outline its application to the pressure equation. Let q= D. f. Then, we
wish to solve

(43)

at all points (j,h, j,h, j,h) of the lattice. Let

1 N*-1 A+-1

qjljzj3=F2 C C Qj,(klTkz)exP
h kl=O kz=O

(44)

and

Substitution of these into Eq. (43) yields, for each (k,, k2), a periodic tridiago~a~
system for the Fourier coefficients P,,(k,, k,):

= -2hQj,(kl> k,) (46)

for j, =O, 1, 2, N, - 1 (Nh = L/h = a power of IE), with subscript arithmetic
modulo Nh. Because of the staggered differencing present in Eq. (46), we, in fact,
ha.ve two NJ2 x NJ2 periodic tridiagonal systems for each (k,, k,), one for od
and one for even j,. The solutions of each such periodic tridiagonal system are
found by forming a suitable linear combination of the solutions of two related
nonperiodic tridiagonal systems.

The data storage requirements for the fluid dynamics calculation exceed the
central memory storage capacity of computers even as large as the CRAY X-M
For this reason, we have implemented an ‘“out-of-core” version of the flui
dynamics algorithm, in which, at any particular instant during the calculations,
only a small subset of the data resides in central memory; the reminder of the dat
reside on the disk. Thus, data must be read from the disk to central memory an

581/79/i-5

64 FOGELSONAND PESKIN

vice versa. Such input/output operations are slower than arithmetic computations,
so we have implemented the fluid-dynamics algorithm in a way that overlaps steps
of the algorithm that use the same data. We should point out that, with very minor
programming changes, the numerical method can be (and has been) used on the
CRAY-2, which has an enormous central memory, with all of the data residing in
central memory.

The fluid dynamics algorithm has been implemented in such a way that all inner-
most loops vectorize. The numerical solution of the Stokes’ equations is discussed
at greater length in [6].

6. COMPUTATIONAL WORK

The work required to carry out the solution of the fluid dynamics equations is
order Nz(log NJ, where Nh is the number of lattice points in each coordinate
direction. The work required for the particle calculations is proportional to the
number of particles. This contrasts with other methods that involve direct particle-
particle interactions and for which the work is proportional to the square of the
number of particles. The relative efficiency of the present method suggests that it
will be especially useful for calculations with large numbers of particles. It is worth
remarking that the computational time (CPU time) required by our calculations
actually grows less rapidly than it would seem from the above discussion. This is a
consequence of the improved efficiency of.vectorization as the vector length grows.

7. RESULTS

We present simulations of one-, two-, and many-particle systems that involve
the sedimentation of the particles under gravity. For all of these simulations, the
external force is given by

fzt = -ge,, (47)

where e3 is a unit vector in the up direction and g is constant. The stiffnesses of the
internal elastic links are large so that we are approximating rigid particles.

The no flux condition at the surface of a particle certainly is satisfied when a
large number of points is used to construct the particle, for these points move at the
local fluid velocity and the interpolated velocity field is slowly varying. Figure 2 is
from a simulation of the settling of an octahedral particle, a particle which consists
of only seven points. The picture depicts the situation after the particle has fallen
approximately ten particle diameters and shows the interpolated velocity field (as
defined by Eq. (27)) near the particle in a vertical plane which bisects the
octahedron. The frame of reference is one in which the average of the velocities of
the left and right vertices is zero. The vertices of the octahedron are separated by

3D STOKES’ FLOW WITH PARTICLES 65

i i

\ \
j

> , , /

+ + +

, I ; I

/ , I ,

, I I i

I , i I

i

FIG. 2. Vertical section through center of mass of octahedral particle settling under gravity. Arrows
show interpolated velocity field in rest frame of particle. Crosses indicate lattice points. Reprinted with
permission.

distances that deviate by less than one percent from their initial values. The
interpolated velocity field, which is plotted at points separated by $ of the mes
space used in the fluid dynamics calculations, is nearly zero for the fluid contained
within the octahedron and in its immediate vicinity. This calculation shows the
effectiveness of using a suitable configuration of point forces (even as few as seven)
to cause nearby fluid to move as a rigid body.

Arguments based on symmetry and the linearity of the Stokes’ equations can be
used to show that two identical rigid spheres which are initially at the same height
will settle along parallel vertical lines. We conducted a series of numerical
experiments to see how well our method could reproduce this result. Figure 3a
shows the settling of two particles each constructed from 21 points distributes at
the vertices and center of a dodecahedron. The Stokes’ equations were solved on a
643 lattice. The two particles fall nearly in parallel; each particle’s trajectory
deviates from the vertical by an angle of about 0.2”. (The particles rotate in
opposite directions as they fall.) We did a similar experiment with two octab~dral
particles (7 points per particle) and a 643 lattice, and another with two “refined
octahedra” (19 points per particle) each of which was constructed from an act
hedral particle by inserting an additional point at the midpoint of each e
linking together the new points of each face. This last calculation was perfor
using a 1283 lattice. In the Fig. 3b, we plot the distance between the centers of

66 FOGELSON AND PESKIN

(I

b
0.0 I I I

0.0 200.0 400.0 600.0 *
TIME

DO. 0

FIG. 3. (a) Sequence of vertical sections through centers of mass of two dodecahedral particles
settling under gravity. Vertical extent of panel is one computational period L. (b) Distance between
centers of mass versus time for 2 octahedra (dotted curve), 2 dodecahedra (dashed curve), and 2 “refined
octahedra” (solid curve) settling under gravity. Reprinted with permission.

mass of the two particles as a function of time for each of these experiments. The
theoretical result to which these graphs should be compared is the horizontal line,
DISTANCE = 6. We see that as the particles are made “more spherical” through
the use of a larger number of points per particle, and also as the computational
mesh is refined, the numerical results approach the theoretical result for rigid
spheres. (Note, however, that in the “refined octahedra,” the additional points are
not projected onto the sphere in which the particle is inscribed.) In all of these
experiments, the nominal radius of each particle (i.e., the radius of the smallest
circumscribing sphere) was 1.0, the initial interparticle distance was 6.0, and the
imposed spatial period in the calculation was 64.0.

We also calculated the ratio of the settling speed for two particles to that for a
single particle and compared this ratio to that predicted by a calculation using the
method of reflections applied to two rigid spheres, as described, for example, in
Happel and Brenner [lo]. For each of the numerical experiments described above,
the ratio was within 9 % of that given by the method of reflections calculation; for
the “refined octahedra,” the ratios differed by less than 3 %.

Two identical rigid spheres, which settle from different initial heights, move in
parallel, each proceeding along a line that lies between the vertical line through it
and the line through the two particles’ centers of mass. Figure 4 shows a numerical
simulation of this phenomenon. The particles were modeled by dodecahedra and

3D STOKES’ FLOW WITH PARTICLES 7

FIG. 4. Sequence of vertical sections through centers of mass of two dodecahedral particles settling
under gravity from different initial heights. Reprinted with permission.

the calculation was done using a 643 lattice. The angle of fall observed in this
simulation was 4.5”, which compares favorably with a prediction of 5.0” based on a
calculation using the method of reflections [lo].

We next describe two types of multi-particle experiments each of which involve
125 particles. In the first of these experiments, octahedral particles were initially
distributed on a cubic lattice which filled the periodic cube B used in our
calculations. The observed average settling speed of the 125 particles was compared
to a prediction based on Hasimoto’s theory for the settling of a periodic cubic array
of spheres [111. For the situation we considered, Hasimoto’s theory predicts a
settling speed of approximately

where a is the particle radius, g is the gravitational force on each sphere, an
/? = @(a/Z)’ is the volume fraction for particles spaced a distance E from one
another. In order to use Eq. (48) to predict a settling speed for an array of particles,
the particle radius must be known. The effective radius of one of our octahedral
particles is larger than the radius of the sphere in which its vertices are inscribed.
This is because each of the vertices has, in effect, a nonzero extent (recall Fig. I)
which augments the nominal radius of the octahedron. If we set U, equal to the
settling speed observed in our single octahedron experiments, and the i~ter~a~~~cl~
spacing I equal to the imposed period L inherent in our calculations, then we can
solve Eq. (48) for an effective radius, aelf, of the octahedral particle. Determining a,@
in this way yields a volume fraction fi = 0.019 for our 125-particle experiment. Thus,
Hasimoto’s theory predicts a settling speed of 0.00339 cm/s for this experiment This
differs by just over 5 % from our observed settling speed of 0.00357 cm/s.

68 FOGELSON AND PESKIN

Our second multi-particle experiment involved 125 octahedral particles whose
random initial positions were chosen from a uniform distribution without overlap.
The observed settling speed early in the calculation (while the distribution was still
random) was compared to Batchelor’s prediction for the settling speed of a random
array of spheres [11. To first order, this prediction is

U,=(l.O-6.55/?)U,, (49)

where U, is the single particle settling speed. With volume fraction /I = 0.019, as in
the previous experiment, Eq. (49) predicts a settling speeds which differs by 4%
from the particle-averaged settling speed, UrZ5, we observed. Since p is small in this
experiment, it may be more useful to compare the “correction coefficient”
(U125 - U,)/(-/3U,) = 8.48, based on our computations; with Batchelor’s coefficient
of 6.55. Of course, many such experiments, with different random choices for the
patches’ initial positions must be performed in order to make meaningful com-
parisions between Batchelor’s theory and our computational results. Yet, even from
these preliminary experiments, we see that the correction in the random case is of
the right order of magnitude; and that the numerical method can clearly distinguish
between the case of a periodic array of particles, for which the settling speed should
be approximately 40% less than for a single particle (for /? = 0.019), and a random
array for which the slowdown should be approximately 12%.

The above calculations were performed on CRAY-1 and CRAY-2 computers at
the Minnesota Supercomputing Center. For the calculations on the CRAY-1, use of
disk storage was essential. The central memory capacity of the CRAY-2 is
sufficiently large that all of our data could reside in central memory even when we
used a (128)3 lattice. An indication of the CPU time required for the fluid and
particle portions of our calculations comes from two runs of 100 timesteps, each of
which used a (64)3 grid. In the first of these runs, IZO particles were present, and the
average CPU-time/timestep was 1.67 s. The second run involved fluid and 64
octahedral particles. The average CPU-time/timestep here was 2.73 s; hence, the
particle calculations for 64 particles took just over 1 s/timestep.

8. CONCLUDING REMARKS

We have presented a new fast numerical method for studying in three dimensions
the dynamics of particles suspended in a very viscous fluid. The method’s behavior
compares favorably in a variety of tests with existing theories for sedimentation in
two- and many-particle systems. Still, these results are preliminary; more
sophisticated comparisons of the method with theory and experiment for a range of
physical situations are needed to foster confidence in its predictions. Also, much
work remains to be done to characterize better the influence of numerical
parameters (e.g., mesh size, number and arrangement of points and links in a
particle, stiffness of links) on the results produced by the method. In addition, the

3D STOKES’ FLOW WITH PARTICLES 9

method can be made more efficient, e.g., by exploiting the sparseness of the Hessian
matrices in the particle-force calculations. Yet, we think it is not premature to say
that the method will prove to be a powerful numerical tool for conducting
multiparticle studies of a wise range of, suspension flows. Among the special
strengths of the numerical methods are its relative efficiency in handling Large
numbers of particles and its ability to treat particles of different sizes and shapes.
While we have thusfar only looked at the rigid-particle limit, we expect that the
method will also allow the study of suspensions of deformable particles an
polymers. Further, the method is not limited to studying flows in unboun
domains, as walls (e.g., those of a tube) can also be assembled out of arrays of the
same kind of localized forces as those used to model the particles.

ACKNOWLEDGMENTS

This work was supported in part by the Multiphase Flow Project (under National Science Foun-
dation Grant DMS-8312229) at the Courant Institute of Mathematical Sciences, in part by the National
Science Foundation under Grants DMS-8502339 and DMS-8602166, and in part by the Applied
Mathematical Sciences Subprogram of the Office of Energy Research, IJ.S. Department of Energy under
Contract DE-AC03-765FOO098.

REFERENCES

1. 6. K. BATCHELOR, J. Fluid Mech. 52, 245 (1972).
2. G. K. BATCHELOR, An Introduction to Fluid Dynamics (Cambridge Univ. Press, London, 1974),

p. 153.
3. S. C. EISENSTAT, M. C. GKJRSKY, M. H. SCHULTZ, AND A. H. SHERMAN, Yale University Department

of Computer Science Report 112, 1977 (unpublished).
4. D. FISCHER, G. GOLUB, 0. HALD, C. LEIVA, AND 0. WIDLUND, Math. Comp. 28, 349 (1974).
5. A. L. FOGELSON, J. Comput. Phys. 56, 111 (1984).
6, A. L. F~CELSON AND C. S. F’ESKIN, in preparation.
7. P. E. GILL AND W. MURRAY, Math. Programming 7, 311 (1974).
8. P. E. GILL AND W. MURRAY, Numerical Methods for Constrained Optimization, (Academic Press,

New York, 1974), p. 37.
9. P. E. GILL AND W. MURRAY, National Physical Laboratory Report NAC 37, 1974, (unpublished).

IO. J. HA&EL AND H. BRENNER, Low Reynolds Number Hydrodynakics (Nijhoff, Boston, 1983), p. 242.
11. H. HASIMOTO, J. Fluid Mech. 5, 317 (1959).
12. C. S. FE?.KIN, J. Comput. Phys. 25, 220 (1977).

